From Fuzzy Models to Fuzzy Control
نویسندگان
چکیده
Traditional (non-fuzzy) control methodology deals with situations when we know exactly how the system behaves and how it will react to diierent controls, and we want to choose an appropriate control strategy. This methodology enables us to transform the description of the plant's (system's) behavior into an appropriate control strategy. In many practical situations, we do not have the exact knowledge of the system's behavior, but we have expert-supplied fuzzy rules which describe this behavior. In such situations, it is desirable to transform these description rules into rules describing control. There exist several reasonable heuristics for such transformation; however, the lack of formal justiica-tion restricts their applicability. In this paper, we provide a justiication for the most natural of the known heuristics: whenever we have a description rule \if A(x) and B(u) then C(_ x)", and we want to achieve _ x = d(x), add a control rule \if A(x) and C(d(x)), then B(u)".
منابع مشابه
A TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron
In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...
متن کاملAsthma Control Level Assessment by Moving from the Current Reactive Care Models into a Preventive Approach based on Fuzzy Clustering and Classification Algorithms
Background and Aim: Asthma is a common and chronic disease of respiratory tracts. The best way to treat Asthma is to control it. Experts of this field suggest the continues monitoring on Asthma symptoms and adjustment of self-care plan with offering the preventive treatment program to have desired control over Asthma. Presenting these plans by the physician is set based on the control level in ...
متن کاملA NOTE TO INTERPRETABLE FUZZY MODELS AND THEIR LEARNING
In this paper we turn the attention to a well developed theory of fuzzy/lin-guis-tic models that are interpretable and, moreover, can be learned from the data.We present four different situations demonstrating both interpretability as well as learning abilities of these models.
متن کاملNON-FRAGILE GUARANTEED COST CONTROL OF T-S FUZZY TIME-VARYING DELAY SYSTEMS WITH LOCAL BILINEAR MODELS
This paper focuses on the non-fragile guaranteed cost control problem for a class of T-S fuzzy time-varying delay systems with local bilinear models. The objective is to design a non-fragile guaranteed cost state feedback controller via the parallel distributed compensation (PDC) approach such that the closed-loop system is delay-dependent asymptotically stable and the closed-loop performance i...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملFuzzy efficiency: Multiplier and enveloping CCR models
Comparing the performance of a set of activities or organizations under uncertainty environment has been performed by means of Fuzzy Data Envelopment Analysis (FDEA) since the traditional DEA models require accurate and precise performance data. As regards a method for dealing with uncertainty environment, many researchers have introduced DEA models in fuzzy environment. Some of these models ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999